The Radon transform on hyperbolic space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE SHEARLET TRANSFORM USING HYPERBOLIC FUNCTIONS

In this paper, we focus on the study of shearlet transform which isdened by using the hyperbolic functions. As a result we check an admissibilitycondition such that implies the reconstruction formula. To this end, we will usethe concept of the classical shearlet, which indicates the position and directionof a singularity.

متن کامل

A fast butterfly algorithm for the hyperbolic Radon transform

We introduce a fast butterfly algorithm for the hyperbolic Radon transform commonly used in seismic data processing. For two-dimensional data, the algorithm runs in complexity O(N2 logN), where N is representative of the number of points in either dimension of data space or model space. Using a series of examples, we show that the proposed algorithm is significantly more efficient than conventi...

متن کامل

The Radon Transform on Z *

where S + x denotes the setf-s + x i s e S ) . Thus, the Radon transform can be thought of as a way of replacing/by a "smeared out" version of /. This form of the transform represents a simplified model of the kind of averaging which occurs in certain applied settings, such as various types of tomography and recent statistical averaging techniques. A fundamental question which arises in connect...

متن کامل

The Radon Transform on Zn

The Radon transform on Zn averages a function over its values on a translate of a fixed subset S in Zn. We discuss invertibility conditions and computer inverse formulas based on the Moore-Penrose inverse and on linear algorithms. We expect the results to be of use in directional and toroidal time series.

متن کامل

The Radon Transform on Z

The Radon transform on Zn averages a function over its values on a translate of a fixed subset S in Zn. We discuss invertibility conditions and computer inverse formulas based on the Moore–Penrose inverse and on linear algorithms. We expect the results to be of use in directional and toroidal time series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 1991

ISSN: 0046-5755,1572-9168

DOI: 10.1007/bf00189917